A sublinear bound on the chromatic index of multigraphs

نویسنده

  • Michael Plantholt
چکیده

The integer round-up 4(G) of the fractional chromatic index yields the standard lower bound for the chromatic index of a multigraph G. We show that if G has even order n, then the chromatic index exceeds 4(G) by at most max{log,,, n, 1 + n/30}. More generally, we show that for any real b, 2/3 O, there exists a positive integer N such that x(G) 4(G) < cn for any multigraph G with order n > N. @ 1999 Elsevier Science B.V. All rights reserved

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The chromatic index of multigraphs of order at most 10

The maximum of the maximum degree and the 'odd set quotients' provides a well-known lower bound 4)(G) for the chromatic index of a multigraph G. Plantholt proved that if G is a multigraph of order at most 8, its chromatic index equals qS(G) and that if G is a multigraph of order 10, the chromatic index of G cannot exceed qS(G) + 1. We identify those multigraphs G of order 9 and 10 whose chromat...

متن کامل

Some maximum multigraphs and adge/vertex distance colourings

Shannon–Vizing–type problems concerning the upper bound for a distance chromatic index of multigraphs G in terms of the maximum degree ∆(G) are studied. Conjectures generalizing those related to the strong chromatic index are presented. The chromatic d–index and chromatic d–number of paths, cycles, trees and some hypercubes are determined. Among hypercubes, however, the exact order of their gro...

متن کامل

A new approach to compute acyclic chromatic index of certain chemical structures

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph $G$ denoted by $chi_a '(G)$ is the minimum number $k$ such that there is an acyclic edge coloring using $k$ colors. The maximum degree in $G$ denoted by $Delta(G)$, is the lower bound for $chi_a '(G)$. $P$-cuts introduced in this paper acts as a powerfu...

متن کامل

Asymptotics of the total chromatic number for multigraphs

For loopless multigraphs, the total chromatic number is asymptotically its fractional counterpart as the latter invariant tends to infinity. The proof of this is based on a recent theorem of Kahn establishing the analogous asymptotic behaviour of the list-chromatic index for multigraphs. The total colouring conjecture, proposed independently by Behzad [1] and Vizing [11], asserts that the total...

متن کامل

Chromatic Edge Strength of Some Multigraphs

The edge strength s(G) of a multigraph G is the minimum number of colors in a minimum sum edge coloring of G. We give closed formulas for the edge strength of bipartite multigraphs and multicycles. These are shown to be classes of multigraphs for which the edge strength is always equal to the chromatic index.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 202  شماره 

صفحات  -

تاریخ انتشار 1999